Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XVII, issue 2, May - August 2011
play_arrow
play_arrow
play_arrow

TEMPERATURAS EXTREMAS EN LA CIUDAD DE MONTERREY N. L. MÉXICO
EXTREME TEMPERATURES IN THE CITY OF MONTERREY N. L. MÉXICO

José G. Ríos-Alejandro

http://dx.doi.org/10.5154/r.rchscfa.2010.06.036

Received: 0000-00-00

Accepted: 0000-00-00

Available online: / pages.225-230

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Considered as a random variable, the lowest temperature of the year in the city of Monterrey, N.L, Mexico is modeled with the Gumbel distribution. Its parameters and some return levels are estimated. Let x be the minimum temperature of the year. In extreme value theory, risk is assessed with p xwhere the prob¬ability that (in a period) x is less than p xis equal to p , so that p / 1is the average number of periods (years) that elapse until the annual minimum temperature is less than p x. In addition, p xis estimated for some values of p , information which is considered important for decision makers. Linear regression, maximum likelihood and Bayesian methodologies are applied.

    Keyworks: Extreme values, Gumbel distribution, return level.
  • beenhereReferences
    • CASELLA G.; BERGER R. L. 2002. Statistical inference second edition. Duxbury. Capítulos 5, 7 y 9.

    • COLES S. 2001. An introduction to statistical modeling of extreme values. Springer-Verlag. pp 18-72 y 169-177.

    • COLES S.; PERICCHI L. 2003. Anticipating catastrophes through extreme value modelling. Journal of the royal statistical society series C. 52:(4) 405-416.

    • COLES S. G.; WALSHAW D. 1994. Directional modelling of extreme wind speeds. Journal of the royal statistical society series C. 43:(1) 139-157.

    • GILKS W. R.; RICHARDSON S.; SPIEGELHALTER D. J. 1996. Introducing Markov chain Monte Carlo. En GILKS W. R.; RICHARDSON S.; SPIEGELHALTER D. J. (editores) Markov chain monte carlo in practice. Chapman & Hall. pp 1-16.

    • HUPPERT, H. E.; SPARKS R. S. 2006. Extreme natural hazards, population growth, globalization and environmental change. Phil. Trans. R. Soc. A. 364:(1845) 1875-1888.

    • KATZ R. W.; BRUSH G. S.; PARLANGE M. B. 2005. Statistics of extremes: modeling ecological disturbances. Ecology, 86:(5) 1224-1134.

    • Minitab 15. Minitab® Statistical Software (versión 15). “MINITAB® and all other trademarks and logos for the Company’s products and services are the exclusive property of Minitab Inc. All other marks referenced remain the property of their

    • SMOLKA A. 2006. Natural disasters and the challenge of extreme events. Phil. Trans. R. Soc. A. 364:(1845) 2147-2165.

    • WALSHAW D.; ANDERSON C. W. 2000. A model for extreme wind gusts. Journal of the royal statistical society series C. 49:(4) 499-508.

  • starCite article

    &  Ríos-Alejandro, J. G. (2011).  EXTREME TEMPERATURES IN THE CITY OF MONTERREY N. L. MÉXICO. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVII(2), 225-230. http://dx.doi.org/10.5154/r.rchscfa.2010.06.036