Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XVII, issue 2, May - August 2011
play_arrow
play_arrow
play_arrow

PRODUCCIÓN DE CLOROFILA EN Pinus pseudostrobus EN ETAPAS JUVENILES BAJO DIFERENTES AMBIENTES DE DESARROLLO
CHLOROPHYLL PRODUCTION IN Pinus pseudostrobus JUVENILES UNDER DIFFERENT DEVELOPMENT ENVIRONMENTS

Víctor Hugo Cambrón-Sandoval; María Luisa España-Boquera; Nahum M. Sánchez-Vargas; Cuauhtémoc Sáenz-Romero; J. Jesús Vargas-Hernández; Yvonne Herrerías-Diego

http://dx.doi.org/10.5154/r.rchscfa.2010.09.077

Received: 2010-09-14

Accepted: 2011-01-24

Available online: / pages.253-260

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Limiting the amount of sun radiation reduces photosynthetic activity, causing stress and morphological and/or physiological changes in plant development. This study analyzed the stress effect caused by two levels of competition in Pinus pseudostrobus Lindl half-sib families: high inter-family (environment II) and high intra-family (environment III) competition, compared with a low level of competition (environment I). Total chlorophyll, chlorophyll-a, and chlorophyll-b content, plus the chlorophyll a/b ratio, were quantified as an indicator of stress level in 10-month-old plants using the Barnes method. Plants were established in a common garden test under a split-plot design with four replications and three individuals per plot. Total chlorophyll was significantly higher (P0.05) were observed be¬tween the other competition environments. A separate analysis of chlorophylls showed lower chlorophyll-a content in plants surrounded by genetically-similar plants (environment III) as opposed to genetically-different ones (environment II); conversely, chlorophyll-b content was higher in genetically-similar plants (environment III). In conclusion, intra-genotypic competition was generally stronger than inter-genotypic competition, under high levels of stress.

    Keyworks: Half-sib families; total chlorophyll, a chlorophyll, b chlorophyll, a/b chlorophyll, competition environment.
  • beenhereReferences
    • ADAMS W. T.; ROBERTS, J., H.; ZOBEL, B., J. 1973. Intergenotypic interactions among families of Loblolly Pine (Pinus taeda L.). Theoretical and Applied Genetetic 43: 319-322.

    • BARNES, J., D.; BALAGUER, L.; MANRIQUE, E.; ELVIRA, S.; DAVISON, W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls-a and chlorophylls-b in lichens and higher plants. Environmental and Experimental Botany 32: 85-100.

    • JEAN-MARC B.; VIGNERON, P.; SAYA, A. 2005. Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybrid clones and families. Annals of Botany. 96: 811-821.

    • CARTER, G.; KNAPP, A. 2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88(4): 677-684.

    • CARTER, G.; PALIWAL, K.; PATHRE, U.; GREEN, T.; MITCHELL, R; GJERSTAD, D. 1989. Effect of competition and leaf age on visible and infrared reflectance in pine foliage. Plant Cell and Environment 12(3): 309-315.

    • FERREIRA, M.; MASCARENHAS, SOBRINHO, J. 1972. The introduction of Mexican pines into the region of Poços de Caldas. IPEF Piracicaba 4: 95-109.

    • GARCÍA-BREIJO F., J.; ROSELLÓ, CASELLES, J; SANTAMARINASIURANA, M., P. 2006. Introducción al funcionamiento de las plantas. Editorial: Universidad Politécnica de Valencia. Valencia, España. 181.

    • GRONINGER, J., W.; SEILER, J., R.; PETERSON, J., A.; KREH, R., E. 1996. Growth and photosynthetic responses of four Virginia piedmont tree species to shade. Tree Physiology 16: 773-778.

    • KAUFMANN, M., R.; LINDER, S. 1996. Tree physiology research in a changing world. Tree Physiology 16(1/2): 1-4.

    • LÓPEZ-DONATE, J., Á.; OROZCO-BAYO, E.; SÁEZ-MARTÍNEZ, J., J.; MARTÍNEZ-SÁNCHEZ, J., J. 2000. Variaciones morfológicas y bioquímicas en la acículas de Pinus halepensis MilI. Tras someterse a distintas intensidades de poda. Cuadernos de la Sociedad Española de Ciencias Forestales 10: 133-138.

    • MEDINA-CANO, C., I.; MARTÍNEZ-BUSTAMANTE, E.; LOBO-ARIAS, M.; LÓPEZ-NÚÑEZ, J., C.; RIAÑO-HERRERA, N., M. 2006. Comportamiento bioquímico y del intercambio gaseoso del Lulo (Solanum quitoense Lam.) a plena exposición solar en el bosque húmedo montano bajo del oriente antiqueño Colombiano. Revista Facultad Nacional de Agronomía Medellín 59(1): 3123-3146.

    • MITCHEL, A., K.; ARNOTT, J., T. 1995. Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New Forests. 10: 79-98.

    • NAKAZONO, M., E.; DA COSTA, M., C.; FUTATSUGI, K.; SILVEIRA, P., M. 2001. Crescimento inicial de Euterpe edulis Mart. em diferentes regimes de luz. Revista Brasileira de Botânica 24(2): 173-179.

    • NOLAND, T., L.; MOHAMMED, G., H.; WAGNER, R., G. 2001. Morphological characteristics associated with tolerance to competition from herbaceous vegetation for seedlings of jack pine, black spruce and white pine. New Forests 21: 199-215.

    • SAS INSTITUTE, INC. 2006. SAS / STAT Guide for Personal Computers, Version 9.1, Raleigh, North Carolina, USA. 1028 p.

    • SHAFIQUR, R., K.; ROBIN, R., D.; THOMAS, E., S. 2000. Effects of shade on morphology, chlorophyll concentration and chlorophyll fluorescence of four Pacific Northwest conifer species. New Forests 19: 171-186.

    • TOWNSEND, A., M.; HANOVER, J., W. 1972. Altitudinal variation in photosynthesis, growth, and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genetica 21(3-4): 133-139.

    • VERMAAS, F., W. 1998. An introduction to photosynthesis and its applications. The World & I 3(1): 158-165.

    • WRIGTH, J., A.; WESSELS, A. 1992. Laboratory scale pulping of Pinus pseudostrobus, P. maximinoi and P. patula. Instituto de Pesquisas Florestais (IPEF) International, Piracicaba 2: 39-44.

    • ZARCO-TEJADA, P.; MILLER, J.; HARRON, J.; HU, B.; NOLAND, T.; GOEL, N.; MOHAMMED, G.; SAMPSON, P. 2004. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sensing of Environment 89(2): 189-199.

  • starCite article

    Cambrón-Sandoval, V. H.,  España-Boquera, M. L.,  Sánchez-Vargas, N. M.,  Sáenz-Romero, C., Vargas-Hernández, J. J.,  &  Herrerías-Diego, Y. (2011).  CHLOROPHYLL PRODUCTION IN Pinus pseudostrobus JUVENILES UNDER DIFFERENT DEVELOPMENT ENVIRONMENTS. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVII(2), 253-260. http://dx.doi.org/10.5154/r.rchscfa.2010.09.077