Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XVII, issue 3, September - December 2011
play_arrow
play_arrow
play_arrow

CONSISTENCIA ENTRE LOS MAPAS GLOBALES Y LOS MAPAS REGIONALES DE LA CUBIERTA TERRESTRE EN EL ESTADO DE MICHOACAN, MÉXICO
CONSISTENCY BETWEEN GLOBAL AND REGIONAL LAND COVER MAPS IN THE STATE OF MICHOACAN, MEXICO

Luis Valderrama-Landeros; Frédéric Baret; María Luisa España-Boquera

http://dx.doi.org/10.5154/r.rchscfa.2010.09.075

Received: 2010-10-14

Accepted: 2011-06-09

Available online: / pages.343-360

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    For some years attempts have been made for constructing global maps using different types of images, methods and systems of nomenclature. These maps are difficult to validate and local-level accuracy can be very variable. The aim of the present study was to contribute to the validation of global land cover maps, comparing five of them for the particular case of the state of Michoacan, Mexico. The regional land cover map produced by the National Commission for Knowledge and Use of Biodiversity of Mexico was taken as reference, and consistency and spatial area as criteria. The comparison considering the original legends revealed inconsistencies, due in part to differences in classification systems. After a merged legend with six general classes was established, the overall ac¬curacy between maps ranged from 9 to 62 %. Only 2 % of the pixels matched in 4 maps (mainly towns and water) and 88 % agreed in 2 or 3 maps. The main problem is the discrimination between cropland areas and other kinds of vegetation. The more recent maps based on the nomenclature proposed by FAO had an increased accuracy, but not enough to consider them as appropriately detecting the main land covers. The use of global land cover maps in situations of great biodiversity must be adequately contextualized.

    Keyworks: UMD, IGBP, MODIS, GLC2000, GLOBCOVER
  • beenhereReferences
    • Bartholomé, E., Belward, A. S., & GLC2000. (2005). GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959-1977.

    • Bicheron, P., Leroy, M., Brockmann, C., Krämer, U., Miras, B., Huc, M., & Gross, D. (2006). GLOBCOVER: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. Retrieved Jun 2008, 2006.

    • Bocco, G., Mendoza, M., & Masera, O., R. (2001). La dinámica del cambio de uso de suelo en Michoacán. Una propuesta metodológica para el estudio de los procesos de deforestación. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM (44), 18-38.

    • CONABIO. (1998). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved September 2008.

    • Congalton, R. G. (1991). A review of assesing the accuracy of clasifications of remotely sensed data. Remote Sensing of Environment (37), 35-46.

    • Defourny, P., Bicheron, B., Brockmann, C., Bontemps, S., Bogaert, V. E., Vancutsem, C., & Arino, O. (2009). The first 300m global land cover map for 2005 using ENVISAT MERIS time series: a product of the GlobCover system.

    • Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & Leroy, M. (2006). GLOBCOVER: a 300 m global land cover product for 2005 using Envisat MERIS time series.

    • Defries, R., & Townshend, J. R. G. (1994). NDVI-derived land cover classification at global scale. International Journal of Remote Sensing, 15(17), 3567-3586.

    • Di Gregorio, A., & Jansen, L. J. M. (2000). Land cover classification system: LCCS: classification concepts and user manual: Food and Agriculture Organization of the United Nations.

    • Friedl, M. A., Mclver, D. K., Hodges, J. C., F., Zhang, X. Y., Muchoney, D., Strahler, A. H., . . . COoper, A. (2002). Global Land Cover Mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 83 (1-2), 287-302.

    • Fritz, S., & See, L. (2007). Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Covers for different applications. Global Change Biology, 14(5), 1057-1075.

    • González-Medrano, F. (2003). Las comunidades vegetales de México. Propuesta para la unificación de la clasificación y nomenclatura de la vegetación de México. Instituto Nacional de Ecología, México, DF.

    • Hansen, M. C., DeFries, M., R, Townshend, J. R. G., & Sohlberg, R. (2000). Global Land Cover Classification at 1 Kilometer spatial resolution using a classification tree aproach. International Journal of Remote Sensing, 21(6/7), 1331- 1364.

    • Hansen, M. C., & Reed, B. (2000). A Comparison of the IGBPDISCover and University of Maryland 1km global land cover products. International Journal of Remote Sensing, 21(6&7), 1365-1373.

    • Herold, M. (2006). A joint initiative for harmonization and validation of land cover data sets. Geoscience and Remote Sensing, IEEE Transactions on, 44(7), 1719-1727.

    • Herold, M. (2008). Some challenges in global land cover mapping: An assessment of agreement ans accuracy in existing 1 km data sets. Remote Sensing of Environment(112), 2538- 2556.

    • IGBP. (2009). International Geosphere-Biosphere Program. Retrieved May 2009.

    • INEGI. (2009). Intituto Nacional de Estadística y Geografía Retrieved May 2009.

    • Inventario, F. (1995). Memorias Regionales 1995. Morelia. Gobierno del Estado de Michoacán.

    • Lambin, E. F., & Geist, H. J. (2001). Global land-use and land-cover change: what have we learned so far? Global Change News Latter (46), 27-30.

    • Latifovic, R., Zhu, Z., Cihlar, J., Beaubien, J., & Fraser, R. (2000). The Land Cover Map for North America in the Year 2000,

    • Liu, D., Song, K., Townshend, J. R. G., & Gong, P. (2008). Using local transition probability models in Markov random fields for forest change detection. Remote Sensing of Environment(112), 2222-2231.

    • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, O., Zhu, J., Yang, L., & Merchant, J. W. (2000). Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1-km AVHRR Data. International Journal of Remote Sensing, 21(6/7), 1303-1330.

    • Mayaux, P., Eva, P., Gallego, H., Strahler, J., Herold, A. H., Agrawal, M., . . . Roy, P. (2006). Validation of the global land cover 2000 map. Geoscience and Remote Sensing, IEEE Transactions on, 44(7).

    • McCallum, I., Obersteiner, M., Nilsson, S., & Shvidenko, A. (2006). A Spatial comparison of four satellite derived 1 km global land cover datasets. Internationa Journal of Applied Earth Observations and Geoinformation 8 (8), 246-255.

    • Miranda, F., & Hernández, X. (1963). Los tipos de vegetación de México y su clasificación. Boletin de la Sociedad Botánica Mexicana(28).

    • Morissette, J. T., Baret, F., Privette, J. L., Myneni, R. B., Nickeson, J. E., Garrigues, S., . . . Cook, R. (2006). Validation of Global Moderate Resolution LAI products: a framework proposed within the CEOS Land product validation subgroup. Geoscience and Remote Sensing, IEEE Transactions on, 44(7), 1804-1817.

    • Muchoney, D., Strahler, A. H., Hodges, J. C., F., & LoCastro, J. (1999). The IGBP discover confidence sites and the System for Terrestrial Ecosystem parameterization: Tool for validating global land cover data. Photogrammetric Engineering & Remote Sensing, 65(9).

    • POSTEL.(2009). Pôle d’observation des surfaces continentales par teledétéction Retrieved May 2009, 2009,

    • Retrieved May 2009, 2009,

    • Rossiter, D. G. (1994). Lectures Notes: “Land Evaluation”. Cornell University, College of Agriculture and Life Science, Department of Soil, Crop and Atmospheric Science. Retrieved

    • Rzedowski. (1978). Vegetación de México. México D.F: Editorial Limusa.

    • Scepan, J. (1999). Thematic Validation of High Resolution Global Land Cover Data Sets. Photogrammetric Engineering & Remote Sensing, 65, 1051-1060.

    • See, & Fritz. (2006). Towards a global hybrid land cover map for the year 2000. Geoscience and Remote Sensing, IEEE Transactions on, 44(7), 1740, 1746.

    • SEMARNAP. (1997). Estadísticas del Medio Ambiente. México D.F.: INEGI.

    • UMd. (2009). University of Maryland Retrieved May 2009.

    • Velazquez, A., Mas, J. F., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, P. C., Castro, R., & Palacio, J. L. (2008). Patrones y Tasas de Cambio de Uso de Suelo en México. Retrieved September 2008.

  • starCite article

    Valderrama-Landeros, L., Baret, F., &  España-Boquera, M. L. (2011).  CONSISTENCY BETWEEN GLOBAL AND REGIONAL LAND COVER MAPS IN THE STATE OF MICHOACAN, MEXICO. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVII(3), 343-360. http://dx.doi.org/10.5154/r.rchscfa.2010.09.075