Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XVIII, issue 1, January - April 2012
play_arrow
play_arrow
play_arrow

ALMACÉN DE CARBONO EN SISTEMAS AGROFORESTALES CON CAFÉ
CARBON STOCKS IN AGROFORESTRY SYSTEMS WITH COFFEE PLANTATIONS

Antonio Vázquez-Alarcón; William Espinoza-Domínguez; Laksmi Reddiar Krishnamurthy; Antonio Torres-Rivera

http://dx.doi.org/10.5154/r.rchscfa.2011.04.030

Received: 2011-04-01

Accepted: 2011-12-15

Available online: / pages.57-70

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    This study was conducted with the aim of estimating carbon stocks in coffee-based agroforestry sys¬tems (AFS) in the Huatusco region, a major coffee (Coffea arabica L.) producing area in the state of Veracruz, Mexico, in order to obtain quantitative data on the carbon mitigation potential of major agro¬forestry systems in that region. To this end, carbon stocks were estimated for plant biomass and soil organic matter in the following agroforestry systems: coffee-banana, coffee-macadamia, coffee-pink cedar, coffee-sheep and coffee-Inga spuria, as well as a primary forest and a grazing land for com¬parative purposes. The samples were collected from 4 x 25 m (100 m2) plots for tree biomass, herbs and litter; for soil, the sampling depth was 0 to 30 cm. The highest amount of aboveground carbon, estimated using allometric models, was recorded for coffee-pink cedar (Co + Ce), with 114 Mg C•ha-1, followed in descending order by: coffee-macadamia (Co + Ma), with 34 C Mg•ha-1; coffee-Inga spuria (Co + In), with 29 C Mg•ha-1; coffee-banana (Co + Ba), with 27 Mg C•ha-1; and lastly the grazing land (G) with 2 Mg C•ha-1. For soil organic carbon, the Co + Ce treatment had the highest amount with 58 Mg C•ha-1, while the grazing land (G) had the lowest with 50 Mg C•ha-1. As far as total organic carbon is concerned, the maximum amount of 172 Mg C•ha-1 was found in Co + Ce and the minimum, 65 Mg C•ha-1, in the grazing land. In conclusion, among the coffee-based systems studied, the average carbon stock is 102 Mg C•ha-1, compared to 52 Mg C•ha-1 for the grazing land and 355 Mg C•ha-1 for the primary forest, which stores the most total carbon.

    Keyworks: Carbon stock, coffee plantation, agroforestry systems, soil carbon, Mexico.
  • beenhereReferences
    • Aguirre D., C. M. (2006). Servicios ambientales: captura de carbono en sistemas de café bajo sombra en Chiapas, México. México. Universidad Autónoma Chapingo. Maestría en Agroforestería para el Desarrollo Sostenible.

    • Anderson, J. M. & Ingram, J. S. I. (1993). Tropical soil biology and fertility a handbook of methods. London, UK . CAB International.

    • Ávila, G., Jiménez, F., Beer, J., Gómez, M., & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería de las Américas 8(30), 32 - 35.

    • Balbontín-Claudio, C., Cruz, C. O., Paz, F. & Etchévers, J. D. (2009). Soil carbon sequestration in different ecoregions of Mexico. In: Rattan Lal and Ronald F. Follett, (Eds). Soil Carbon Sequestration and the Greenhouse Effect. 2nd edition. Special Publication 57. Madison, WI, USA.

    • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. (FAO Forestry Paper - 134). Rome, Italia. FAO.

    • Brown, S. A. J., Gillespie, J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with application to forest inventory data. Forest Science. 35(4), 881-902.

    • Callo-Concha, D. A. (2001). Cuantificación del carbono secuestrado por algunos sistemas agroforestales y testigos en tres pisos Ecológicos de la Amazonia del Perú. Universidad Autónoma Chapingo. Maestría en Agroforestería para el Desarrollo Sostenible. México.

    • Chave J., Andalo, C., Brown, S., Cairn, M. A., Chambers, J. Q., Eamus, D., Foslster H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B. & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99.

    • Cordero, J. & Boshier, D. H. (2003). Árboles de Centroamérica: Un manual para extensionistas. Costa Rica. Oxford Forestry Institute y Centro Agronómico Tropical de Investigación y Enseñanza CATIE.

    • De Jong, B., Masera, O. & Hernández-Tejeda T. (2004). Opciones de captura de carbono en el sector forestal. En: Cambio Climático: Una visión desde México. (pp 369-380) México. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) e Instituto Nacional de Ecología (INE).

    • De Jong, B., Tipper, R. & Taylor, R. (1997). A Framework for monitoring and evaluation of carbon mitigation by farm forestry projects: example of a demonstration project in Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 2, 231-246.

    • Frangi, J. L. & A. E. Lugo. (1985). Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs. 55, 351-369.

    • Hairiah, K., Sitompul, S. M., Van Noordwijk, M. & Palm, C. A. (2001). Carbon stocks of tropical land use systems as part of the global carbon balance: effects of forest conversion and options for clean development activities. Alternatives to slash-and-burn (ASB) Lecture Note 4. Bogor, Indonesia. ICRAF.

    • Herrera M., Del Valle, J. & Orrego, S. (2001). Biomasa de la vegetación herbácea y leñosa pequeña y necromasa en bosques tropicales y secundarios de Colombia. Universidad Nacional de Colombia.

    • IPCC, (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton, J. T., Y. Ding, D.J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.). Cambridge, United Kingdom and New York, NY, USA. Cambridge University Press,

    • Lamprecht, H. (1990). Silvicultura en los trópicos. Los ecosistemas forestales en los bosques tropicales y sus especies arbóreas, posibilidades y métodos para un aprovechamiento sostenido. Cooperación Técnica, República Federal de Alemania. Eschborn.

    • MacDiken, K. (1997). A Guide to monitoring carbon storage in forestry and agroforestry projects. Arlington, VA, USA. Winrock International Institute for Agriculture Development.

    • Moguel, P. & Toledo, V. M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology 13 (1), 11 - 21.

    • Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agroforestry Systems 61, 281 – 295.

    • Montoya, G. L., Soto P., Jong, B. Nelson, K. Farías, P., Taylor, J. & Tipper, R. (1995). Desarrollo Forestal Sustentable: Captura de Carbono en las Zonas Tzeltal y Tojolabal del Estado de Chiapas. México, D. F. Instituto Nacional de Ecología, Cuadernos de Trabajo 4.

    • Nair, P. K. R. (1993). An introduction to agroforestry. The Netherlands. Kluwer Academic Publishers.

    • Oelbermann, M., Voroney, P. R., & Gordon, M. A. (2004). Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agriculture, Ecosystems and Environment 104, 359 - 377.

    • Rajagopal, R. I. (2004). Estimación del secuestro de carbono en sistemas agroforestales a base de cítricos en el trópico húmedo mexicano. Universidad Autónoma Chapingo. Maestría en Agroforestería para el Desarrollo Sostenible. México.

    • Rügnitz M. T.; Chacón, L. M. & Porro R. (2009). Guía para la determinación de carbono en pequeñas propiedades rurales. Lima, Perú. Centro Mundial de Agroforestería, Consorcio Iniciativa Amazónica.

    • Schroeder, P. (1994). Carbon storage benefits of agroforestry systems. Agroforestry Systems 27, 89–97.

    • Schroth, G., & Sinclair, F. L. (2003). Trees, crops and soil fertility. Concepts and research methods. UK. CABI Publishing.

    • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. New York, NY. John Wiley and Sons.

    • Van Wagner, C. E. (1968). The line intersect method in forest fuel sampling. Forest Science 14(1), 20-26.

    • Woomer, P. L., & Palm, C. A. (1993). Shifting cultivation effects of tropical soil organic matter. Experimental protocol prepared for the Global Iniciative for Alter¬natives to Slash and Burn Agriculture. Nairobi, Ke¬nya. Tropical Soil Biology and Fertility Programme. Mimeografiado.

    • Young, A. (1997). Agroforestry for soil management. 2da ed. UK. CAB International. International Centre for Research in Agroforestry (ICRAF).

  • starCite article

    Vázquez-Alarcón, A., Espinoza-Domínguez, W., Krishnamurthy, L. R.,  &  Torres-Rivera, A. (2012).  CARBON STOCKS IN AGROFORESTRY SYSTEMS WITH COFFEE PLANTATIONS. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XVIII(1), 57-70. http://dx.doi.org/10.5154/r.rchscfa.2011.04.030