Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XIX, issue 3, September - December 2013
play_arrow
play_arrow
play_arrow

DIVERSIDAD DE ESPECIES ARBUSTIVAS EN UNA ZONA SEMIÁRIDA DEL CENTRO DE MÉXICO
DIVERSITY OF SHRUB SPECIES IN A SEMIARID AREA OF CENTRAL MEXICO

Sandra M. Gelviz-Gelvez; Numa P. Pavón

http://dx.doi.org/10.5154/r.rchscfa.2012.08.049

Received: 06-08-2012

Accepted: 18-07-2013

Available online: / pages.323-335

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The alpha diversity (true diversity) and beta diversity (turnover and nestedness) of shrub species were evaluated in the semiarid area of Hidalgo, Mexico. The importance value index of species was related to soil variables and climatic factors. We found 46 species from 21 families. Asteraceae and Fabaceae were the most important. The greatest number of effective species recorded was 7.8 and the smaller was 1.6. Beta diversity was high (0.9), mainly due to the turnover component (0.87) and to a lesser extent due to nestedness (0.38). Precipitation, nitrogen, pH and percentage of sand were the most important variables to explain the species distribution. These results agree with those reported in other semiarid areas. High regional diversity is due to a high species turnover generated by environmental heterogeneity that is displayed as a mosaic of conditions, both climatic and soil characteristics. 

    Keyworks: Shrubs, true diversity, beta diversity, xeric scrub, soil.
  • beenhereReferences
    • Aguiar, M. R., & Sala, O. E. (1999). Patch structure, dynamic and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution, 14, 273–277.

    • Álvarez-Yépis, J. C., Martínez-Yrízar, A., Búrquez, A., & Lindquist, C. (2008). Variation in vegetation structure and soil properties related tol and use history of old-growth and secondary tropical dry forest in northwestern Mexico. Forest Ecology and Management, 256, 355–366.

    • Aronson, J., & Shmida, A. (1992). Plant diversity along a Mediterranean-desert gradient and its correlation with interanual rainfall fluctuations. Journal of Arid Environments, 23, 235–247.

    • Arriaga, L. (2009). Implicaciones del cambio de uso de suelo en la biodiversidad de los matorrales xerófilos: Un enfoque multiescalar. Investigación Ambiental, 1, 6–16.

    • Balleza, J., & Villaseñor, J. L. (2011). Contribución del estado de Zacatecas (México) a la conservación de la riqueza florística del desierto Chihuahuense. Acta Botánica Mexicana, 94, 61–89.

    • Balvanera, P., Lott, E., Segura, G., Siebe, C., & Islas, A. (2002). Patterns of β-diversity in a Mexican tropical dry forest. Journal of Vegetation Science, 13, 145-158.

    • Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.

    • Barajas, G. C. I. (2005). Evaluación de la diversidad de la flora en el campus Juriquilla de la UNAM. Evaluación de la Biodiversidad, 1, 9–10.

    • Bhandari, B., & Ficklin, R. L. (2009). Characterizing the variability of physical and chemical properties across the soil individuals mapped as amy silt loam soils in southeastern Arkansas. Journal of the Arkansas Academy of Science, 63, 34–43.

    • Celaya-Michel, H., & Castellanos-Villegas, E. (2011). Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana, 29, 343–356.

    • Challenger, A., & Soberón, J. (2008). Los ecosistemas terrestres de México. In J. Soberón, G. Halffter, & J. Llorente (Eds.), Capital natural de México, Vol. I: Conocimiento actual de la biodiversidad (pp. 88–105). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

    • Chesson, P., Gebauer, R. L. E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M. S. K., & Weltzin, J. F. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141(2), 236–253.

    • Environmental Systems Research Institute (ESRI). (1999). ArcView Gis 3.2. Nueva York, USA: Autor.

    • Gutiérrez, J. R., & Squeo. F. A. (2004). Importancia de los arbustos leñosos en ecosistemas semiáridos de Chile. Ecosistemas,13, 36–45.

    • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST version 2.07: Paleontological Stadistics Software Package for education and data analysis.

    • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    • Holzapfel, C., Tielbörger, K., Parag, H. A., Kigel, J., & Sternberg, M. (2006). Annual plant-shrub interactions along an aridity gradient. Basic and Applied Ecology, 7, 268–279.

    • Hooper, D. U., & Johnson, L. (1999). Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeohemistry, 46, 247–293.

    • Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.

    • Knight, W. G. (1991). Chemistry of arid regions soils. In J. Skujins (Ed.), Semiarid lands and deserts: Soil resource and reclamation (pp. 111–171). New York, USA: Marcel Dekker.

    • Laity, J. (2008). Deserts and desert environments. New Jersey, USA: Wiley-Blackwell, Hoboken.

    • Leibold, M. A., & Geddes, P. (2005). El concepto de nicho en las metacomunidades. Ecologia Austral, 15, 117–129.

    • McCune, B., & Mefford, M. J. (1995). Pc-Ord, multivariate analysis of ecological data. Version 2.05. Oregon, USA: Gleneden Beach.

    • Monier, M., & El-Ghani, A. (2000). Floristic and environmental relations in two extreme desert zones of western Egypt. Global Ecology and Biogeography, 9, 499–516.

    • Montaño-Árias, N. M., García-Sánchez, R., Ochoa-de la Rosa, G., & Monroy-Ata, A. (2006). Relación entre la vegetación arbustiva, el mezquite y el suelo de un ecosistema semiárido en México. Terra Latinoamericana, 24, 193–205.

    • Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. (2011). Reanalizando la diversidad alfa: Alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82, 1249– 1261.

    • Nanzyo, M., Dahlgren, R., & Shoji, S. (1993). Chemical characteristics of volcanic ash soils. In S. Shoji, & R. Dahlgren (Eds.), Volcanic ash soils genesis, properties and utilization (pp. 145–188). Amsterdam, Netherlands: Elsevier Science Publishers B. V.

    • Noy-Meir, I. (1985). Desert ecosystem structure and function. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (pp. 93–101). Amsterdam, Netherlands: Elsevier.

    • Nuñez-Olivera, E., Martínez-Abaigar, J., Escudero, J. C., & García-Novo, F. (1995). A comparative study of Cistus ladanifer shrublands in Extremadura (CW Spain) on the basis of woody species composition and cover. Plant Ecology, 117(2), 123–132.

    • Pärtel, M. (2002). Local plant diversity patterns and evolutionary history at the regional scale. Ecology, 83, 2361–2366.

    • Patten, R. S., & Ellis, J. E. (1995). Patterns of species and community distributions related to environmental gradients in an arid tropical ecosystem. Journal of Vegetation Science, 117, 69– 79.

    • Pausas, J. G., & Austin, M. P. (2001). Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 12, 153–166.

    • Pavón, N. P., Hernández-Trejo, H., & Rico-Gray, V. (2000). Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlán, México. Journal of Vegetation Science, 11, 39–42.

    • Perroni-Ventura, Y., Montaña, C., & García-Oliva, F. (2006). Relathionship between soil nutrient availability and plant species richness in a tropical semi-arid environment. Journal of Vegetation Science, 17, 719–728.

    • Quian, H., Ricklefs, R. E., & White, P. S. (2005). Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15–22.

    • R Development Core Team. (2010) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    • Reid, N., Stafford-Smith, D. M., Beyer-Münzel, P., & Marroquín, J. (1990). Floristic and structural variation in the Tamaulipan thornscrub northeastern México. Journal of Vegetation Science, 1, 529–538.

    • Reyes-Jaramillo. I. (1996). Fundamentos teórico-prácticos de temas selectos de la ciencia del suelo. Parte I. México: Universidad Autónoma Metropolitana.

    • Romero-López B. E., León-De la Luz, J., Pérez-Navarro, J. J., & De la Cruz- Agüero, G. (2006). Estructura y composición de la vegetación de la barra costera El Mogote, Baja California, México. Boletín de la Sociedad Botánica de México, 79, 21–32.

    • Sánchez-Colón, S., Flores-Martínez, A., Cruz-Leyva, A. I., & Velázquez, A. (2009). Estado y transformación de los ecosistemas por causas humanas. In CONABIO (Ed.), Capital natural de México, Vol. II: Estado de conservación y tendencias de cambio (pp. 75–129). México, D. F.: CONABIO.

    • Sánchez-González, A., & López-Mata, L. 2003. Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica, 74, 47–71.

    • Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605–611.

    • Skopp, J. M. (2000). Physical properties of primary particles. In M. Sumner (Ed.), Handbook of soil science (pp. 3–17). Florida, USA: CRC Press, Boca Ratón.

    • Ter-Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    • Tokeshi, M. (1999). Species coexistence. Ecological and evolutionary perspectives. Oxford, UK: Blackwell Science

    • Ugalde, A. J., Granados-Sánchez, D., & Sánchez-González, A. (2008). Sucesión en el matorral desértico de Larrea tridentata (DC.) conv. en la sierra de catorce, San Luis Potosí, México. Terra Latinoamericana, 26, 153–160.

    • Ulrich, W., & Gotelli, N.J. (2007). Null model analysis of species nestedness patterns. Ecology, 88, 1824–1831.

    • Villavicencio-Nieto, M. A., Pérez-Escandón, B. E., & Ramírez-Aguirre, A. (1998). Lista florística del estado de Hidalgo,recopilación bibliográfica. México: Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas.

    • Wright, D. H., & Reeves, J. H. (1992). On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416–428.

    • Ylva-Li, B., Gowda, J., Martensson, L., Sandberg, J., & Fransson, A. (2010). Plant species richness in a natural Argentinian matorral shrub-land correlates negatively with levels of plant phosphorus. Plant Soil, 345, 11-21.

  • starCite article

    Gelviz-Gelvez, S. M.,  &  Pavón, N. P. (2013).  DIVERSITY OF SHRUB SPECIES IN A SEMIARID AREA OF CENTRAL MEXICO. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XIX(3), 323-335. http://dx.doi.org/10.5154/r.rchscfa.2012.08.049