Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Volume XIX, issue 3, - 2013
play_arrow
play_arrow
play_arrow

MODELOS DINÁMICOS DE CRECIMIENTO PARA RODALES REGULARES Y SU DESAGREGACIÓN PARA LA ESTIMACIÓN DE VOLÚMENES Y BIOMASA
DISAGGREGATED DYNAMIC GROWTH MODELS FOR ESTIMATING VOLUME AND BIOMASS IN EVEN‑AGED STANDS

Esteban Gómez-García

http://dx.doi.org/10.5154/r.rchscfa.2012.08.047

Received: 01-08-2012

Accepted: 20-08-2013

Available online: / pages.337-350

 

file_downloadDownload open_in_newExport citation cloudxml picture_as_pdf View Online
  • descriptionAbstract

    This study presents a methodological process that can be used to develop disaggregated dynamic growth models for estimating total and merchantable volume and aboveground tree biomass (total or by tree component) for single species in even‑aged stands. An example for birch (Betula pubescens Ehrh.) and pedunculate oak (Quercus robur L.) stands in Galicia (northwestern Spain) is used. The stand state at any point in time is defined by three static variables: dominant height, number of trees per hectare and stand basal area. These variables are projected using transition functions in algebraic difference form. A disaggregation system allows estimation of the number of trees and the average height per diameter class from state variables. Finally, output functions that use the estimated diameters and heights are used to estimate volume and biomass.

    Keyworks: Betula pubescens Ehrh., Quercus robur L., disaggregation system, Galicia, Spain.
  • beenhereReferences
    • Avery, T. E., & Burkhart, H. E. (2002). Forest measurements (5a ed.). New York, USA: McGraw-Hill.

    • Bailey, R. L., & Clutter, J. L. (1974). Base-age invariant polymorphic site curves. Forest Science, 20, 155−159.

    • Bailey, R. L., & Dell, T. R. (1973). Quantifying diameter distributions with the Weibull function. Forest Science, 19, 97–104.

    • Barrio, A. M., Castedo, D. F., Diéguez-Aranda, U., Álvarez, G. J. G., Parresol, B. R., & Rodríguez, R. (2006). Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Canadian Journal of Forest Research, 36, 1461–1474.

    • Belsley, D. A. (1991). Conditioning diagnostics, collinearity and weak data in regression. New York, USA: Wiley.

    • Burkhart, H. E. (2003). Suggestions for choosing an appropriate level for modelling forest stands. In A. Amaro, D. Reed, & P. Soares (Eds.), Modelling forest systems (pp. 3–10). Wallingford, UK: CAB International.

    • Cao, Q. V. (2004). Predicting parameters of a Weibull function for modelling diameter distributions. Forest Science, 50, 682−685.

    • Cao, Q. V., Burkhart, H. E., & Lemin, R. C. (1982). Diameter distributions and yields of thinned loblolly pine plantations. USA: School of Forestry and Wildlife Resources, VPI & SU.

    • Castedo, D. F., Diéguez-Aranda, U., Barrio, A. M., Sánchez, R. M., & Gadow, K. (2006). A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management, 229, 202–213.

    • Castedo-Dorado, F., Diéguez-Aranda, U., Barrio-Anta, M., & Álvarez-González, J. G. (2007). Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Annals of Forest Science, 64, 609–619.

    • Clutter, J. L. (1980). Development of taper functions from variabletop merchantable volume equations. Forest Science, 26, 117–120.

    • Crecente-Campo, F., Tomé, M., Soares, P., & Diéguez-Aranda, U. (2010). A generalized nonlinear mixed effects heightdiameter model for Eucalyptus globulus L. in northwestern Spain. Forest Ecology and Management, 259, 943–952.

    • Diéguez-Aranda, U., Grandas-Arias, J. A., Álvarez-González, J. G., & Gadow, K. V. (2006). Site quality curves for birch stands in North-Western Spain. Silva Fennica, 40(4), 631–644.

    • Erviti, J. J. (1991). Desarrollo de modelos de crecimiento y producción de las masas forestales de Pinus halepensis Mill. en España. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, España.

    • Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volumetaper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46, 1–12.

    • Gadow, K. (1996). Modelling growth in managed forests-realism and limits of lumping. Science of the Total Environment,183, 167−177.

    • Gadow, K., & Pukkala, T. (2008). Designing green landscapes. Managing forest ecosystems. Dordrecht, Netherlands: Springer

    • Gadow, K., Real, P., & Álvarez, G. J. G. (2001). Modelización del crecimiento y la evolución de los bosques. Vienna, Austria: IUFRO World Series.

    • García, O. (1988). Growth modeling - a (re)view. New ZealandJournal of Forestry, 33(3), 14−17.

    • García, O. (1994). The state-space approach in growth modelling. Canadian Journal of Forest Research, 24, 1894−1903.

    • Gómez-García, E. (2011). Modelos dinámicos de crecimiento para rodales regulares de Betula pubescens Ehrh. y Quercus robur L. en Galicia. Tesis doctoral, Universidad de Santiago de Compostela, España.

    • González, G. J. M., Castedo, D. F., Diéguez, A. U., Rojo, A. A., Rodríguez, S. R., Álvarez, G. J. G. (2012). Descargar GesMO© 2009. España: Universidade de Santiago de Compostela. Obtenido

    • Huang, S., Yang, Y., & Wang, Y. (2003). A critical look at procedures for validating growth and yield models. In A. Amaro, D. Reed, & P. Soares (Eds.), Modelling forest systems (pp. 271–293). Wallingford, UK: CAB International.

    • Kozak, A. (1988). A variable-exponent taper equation. Canadian Journal of Forest Research, 18, 1363−1368.

    • Kozak, A. (2004). My last words on taper functions. Forestry Chronicle, 80, 507−515.

    • Krumland, B. E., & Wensel, L. C. (1988). A generalized height-diameter equation for coastal California species. Western Journal ofApplied Forestry, 3, 113–115.

    • López, S. C. A., Gorgoso, J. J., Castedo, D. F., Rojo, A., Rodríguez, S. R., Álvarez, G. J. G., & Sánchez, R. F. (2003). A heightdiameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Annals of Forest Science, 60, 237–245.

    • Max, T. A., & Burkhart, H. E. (1976). Segmented polynomial regression applied to taper equations. Forest Science, 22(3), 283–289.

    • Munro, D. D. (1974). Forest growth models-a prognosis. In J. Fries (Ed.), Growth models for tree and stand simulation (pp.7−21). Stockholm, Sweden: Royal College of Forestry.

    • Satoo, T., & Madgwick, H. A. I. (1982). Forest biomass. Forestry sciences. Holanda: Kluwer Academic Publishers Group.

    • Sharma, M., & Parton, J. (2007). Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management, 249, 187–198.

    • Sharma, M., & Zhang, S. Y. (2004). Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research, 19, 442–451.

    • Statistical Analysis System (SAS) Institute Inc. (2008). SAS/ETS® 9.2. User’s Guide. Cary, NC, USA: Autor.

    • Statistical Analysis System (SAS) Institute Inc. (2009). SAS/STAT® 9.2 User’s Guide (2a ed.). Cary, NC, USA: Autor.

    • Tomé, M. (1988). Modelação do crescimento da árvore individual em povoamentos de Eucalyptus globulus Labill. (1ª rotação) na região centro de Portugal. Tesis Doctoral, Instituto Superior de Agronomía, Universidad Técnica de Lisboa, Portugal.

    • Vanclay, J. K. (1994). Modelling forest growth and yield. Applications to mixed tropical forests. Wallingford, UK: CAB International.

    • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838.

  • starCite article

    &  Gómez-García, E. (2013).  DISAGGREGATED DYNAMIC GROWTH MODELS FOR ESTIMATING VOLUME AND BIOMASS IN EVEN‑AGED STANDS. , XIX(3), 337-350. http://dx.doi.org/10.5154/r.rchscfa.2012.08.047