Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XIX, issue 3, September - December 2013
play_arrow
play_arrow
play_arrow

RESPUESTAS MORFOGÉNICAS EN LA PROPAGACIÓN in vitro DE NOGAL PECANERO (Carya illinoinensis [Wangenh] K. Koch)
MORPHOGENIC RESPONSES IN THE in vitro PROPAGATION OF PECAN (Carya illinoinensis [Wangenh] K. Koch)

Jazmín A. Ávila-Treviño; Jesús Guadalupe Arreola-Ávila; José Luis Rodríguez-de la O; Ricardo Trejo-Calzada; Ricardo David Valdez-Cepeda; Amparo Borja-de la Rosa

http://dx.doi.org/10.5154/r.rchscfa.2013.09.037

Received: 15-09-2013

Accepted: 28-11-2013

Available online: / pages.469-481

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    Embryogenic and organogenic responses in pecan (Carya illinoinensis [Wangenh] K. Koch) were observed as a result of the in vitro cultivation of segments of leaves, axillary buds and zygotic embryos. Necrosis was controlled through the use of activated carbon (AC: 1%), polyvinylpyrrolidone (0.1 %), silver nitrate (AgNO3: 1 %), citric acid (150 mg·L-1) and ascorbic acid (100 mg·L-1, in both light and darkness. Murashige and Skoog base medium (MS) was used, supplemented with 0.40 mg·L-1 of thiamine, 100 mg·L-1 of myo-inositol, 3 % saccharose, incorporating 2,4-D for leaves, thidiazuron (TDZ) for embryos, and combinations of benzyladenine (BA), kinetin (KIN) naphthalenacetic acid (ANA) and indolebutyric acid (AIB) for axillary buds. Tissue necrosis was reduced by 75 % and 83 % adding CA and AgNO3, respectively. 33 % and 66 % of embryogenic callus originated from leaves, using 1 and 3 mg·L-1 of 2,4-D. The highest callus production (58 %) from embryos was obtained from the concentration of 3 mg·L-1 of TDZ. In axillary buds, the combination of KIN (3.0 μM), BA (1.0 μM) and AIB (0.3 μM) increased the number of leaves and seedlings, as well as shoot length.

    Keyworks: Explants, callogenesis, antioxidants, growth regulators.
  • beenhereReferences
    • Aiiyu, O. (2005). Application of tissue culture to cashew (Anacardium occidentale L.) breeding: An appraisal. African Journal of Biotechnology, 4,1485–1489.

    • Álvarez, J. M., Majada, J., & Ordás, R. J. (2009). An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry, 86(2), 175–184.

    • De la Viña, G., Barceló-Muñoz, A., & Pliego-Alfaro, F. (2001). Effect of culture media and irradiance level on growth and morfology of Persea americana Mill microcuttings. Plant Cell, Tissue and Organ Culture, 65, 229–237.

    • Huang, T., Shaolin, P., Gaofeng, D., & Lanying, Z. (2002). Plant regeneration from leaf-derived callus in Citrus grandis (pummelo): Effects of auxins in callus induction medium. Plant Cell, Tissue and Organ Culture, 69 (2), 141–146.

    • Humanez, A., Blasco, M., Brisa, C., Segura, J., & Arrillaga, I. (2011). Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of mediterranean provenances of maritime pine Pinus pinaster. In Vitro Celular and Developmental Biology Plant, 47(5), 569–577.

    • Kryvenki, M., Kosky, R. G., Guerrero, D., Domínguez, M., &Reyes, M. (2008). Obtención de callos con estructuras embriogénicas de Stevia rebaudiana Bert. en medios de cultivo semisólidos. Biotecnología Vegetal, 8(2), 1609–1841.

    • Labardi, M. I., Herry, I. S., Menabeni, D., Thorpe, T. A. (1995). Organogenesis and stomatic embryogenesis in Cupressus sempevirens. Plant Cell Tussue and Organ Culture, 40, 179–182.

    • Lelu-Walter, W. M., Bernier-Cardou, C. M., & Klimaszewska, K. (2006). Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (AIt.). Plan Cell Reproduction,25(8), 767–776.

    • Long, L. M., Preece, J. E., & Sambeeck, J. W. (1995). Adventitious regeneration of Juglans nigra (eastern black walnut). Plant Cell Reproduction, 14, 799–803.

    • Minitab Inc. (2009). Minitab 16 statistical Software. Pensilvania. USA.

    • Moore, E. D., Williams, G. W., Palma, M. A., & Lombardini, L. (2009). Effectiveness of state level pecan promotion programs: The case of the Texas pecan checkoff program. HortScience, 44, 1914–1920.

    • Mulwa, R. M., & Bhalla, P. L. (2006). In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L. Johnson). Plant Cell Reproduction, 25, 1281–1286.

    • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum, 15, 473–497.

    • Nomura, K., Matsumoto, S., Masuda, K., & Inoue, M. (1998). Reduced glutathione promotes callus growth and shoot development in a shoot tip culture of apple root stock M26. Plant Cell Reproduction, 17, 597–600.

    • Ollero, J., Muñoz, J., Segura, J., & Arrillaga, I. (2010). Micropropagation of oleander (Nerium oleander L.). HortScience, 45(1), 98–102.

    • Percy, R. E., Klimaszwska, K., & Cyr, D. R. (2000). Evaluation of somatic embryiogenesis for clonal propagation of western white pine. Canadian Journal of Forestry Research, 30,1867–1876.

    • Poornima, G. N., & Ravishankar, R. V. (2007). In vitro propagation of wild yams, Dioscorea oppositifolia (Linn) and Dioscorea pentaphylla (Linn). Journal of Biotechnology, 6(20), 2348–2352.

    • Rodríguez, A. P., & Wetzstein, H. Y. (1994). The effect of auxin type and concentration on pecan (Carya illinoinensis) subsequent convertion in plants. Plant Cell Reproduction, 13, 607–611.

    • Ruginy, E., & Muganu, M. (1998). A novel strategy for the induction and maintenance of shoot regeneration from callus derived from stablished shoots of apple (Malus domestica) cv. Golden Delicious. Plant Cell Reproduction, 17, 581–585.

    • Salvi, N. D., Singh, H., Tivarekar, S., & Eapen, S. (2001). Plant regeneration from different explants of neem. Plant Cell Tissue and Organ Culture, 65,159–162. doi:

    • Scaltsoyiannes, A., Tsoulpha, P., Panestos, K., & Moulalis, D. (1998). Effect of genotype on micropropagation of walnut trees (Juglans regia). Journal Silvae Genetica, 46(6), 326–332.

    • SPSS Inc. (2009). PASW Statistics. Chicago IL.

    • Tavakkol, R., Angoshtari, R., & KalantariI, S. (2011). Effects of light and different plant growth regulators on induction of callus growth in rapeseed (Brassica napus L.) genotypes. Plant Omic Jurnal, 4(2), 60–67.

    • Thompson, T. E., & Grauke, L. J. (2012). ‘Lipan’ Pecan. HortScience, 47, 121–123.

    • Uribe, M., & Cifuentes, L. (2004). Aplicación de técnicas de cultivo in vitro en la propagación de Legrandia concinna. Bosque, 25(1), 717–724.

    • Valderrama, S., Chico, J., Tejada, J., & Vega, A. (2008). Regeneración de plántulas, vía embriogénesis somática, a partir de hojas de fresa, Fragaria virginiana, utilizando ANA y BAP. Rebiol, 28(2), 346–351.

    • Vieitez, A. M., Corredoira, E., Ballester, A., Muñoz, F., Durán, J., &Ibarra, M. (2009). In vitro regeneration of the importante North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell, Tissue and Organ Culture, 98, 135–145.

  • starCite article

    Ávila-Treviño, J. A.,  Arreola-Ávila, J. G.,  Rodríguez-de la O, J. L.,  Trejo-Calzada, R., Valdez-Cepeda, R. D.,  &  Borja-de la Rosa, A. (2013).  MORPHOGENIC RESPONSES IN THE in vitro PROPAGATION OF PECAN (Carya illinoinensis [Wangenh] K. Koch). Revista Chapingo Serie Ciencias Forestales y del Ambiente, XIX(3), 469-481. http://dx.doi.org/10.5154/r.rchscfa.2013.09.037