Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XX, issue 1, January - April 2014
play_arrow
play_arrow
play_arrow

CONTENIDO DE HUMEDAD Y SUSTANCIAS INORGÁNICAS EN SUBPRODUCTOS MADERABLES DE PINO PARA SU USO EN PÉLETS Y BRIQUETAS
MOISTURE AND INORGANIC SUBSTANCE CONTENT IN PINE TIMBER PRODUCTS FOR USE IN PELLETS AND BRIQUETTES

Fermín Correa-Méndez; Artemio Carrillo-Parra; José G. Rutiaga-Quiñones; Francisco Márquez-Montesino; Humberto González-Rodríguez; Enrique Jurado-Ybarra; Fortunato Garza-Ocañas

http://dx.doi.org/10.5154/r.rchscfa.2013.04.012

Received: 18-04-2013

Accepted: 27-01-2014

Available online: / pages.77-88

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The forest industry in the municipal seat of Nuevo San Juan Parangaricutiro and the Indigenous Community of Nuevo San Juan Parangaricutiro, located in Michoacán state, Mexico, generates 1,232 m3·year-1 of underutilized pine sawdust and shavings. The sawdust and shavings of Pinus leiophylla Sch. Et Cham., P. montezumae Lamb. and P. pseudostrobus Lindl were subjected to physicochemical analyzes to determine if they meet the requirements for pellet and briquette production. The moisture, ash, and inorganic element contents in the byproducts were determined using international standards. Moisture content in ash was 51.5 ± 1.9 %, and 53.7 ± 0.1 % in shavings; these values exceeded the maximum allowable. Ash content in sawdust and shavings was 0.26 ± 0.03 % and 0.34 ± 0.03 %, respectively. For the three species evaluated, the average percentage of calcium, potassium, magnesium, phosphorus, sulfur, silicon, iron, aluminum and sodium in sawdust was 47.1 ± 2.8, 26.0 ± 2.5, 13.5 ± 0.4, 5.0 ± 0.4, 3.2 ± 0.4, 2.3 ± 0.8, 1.0 ± 0.1, 1.3 ± 0.4 and 1.4 ± 0.3, respectively, while the average percentage was 43.2 ± 7.0, 16.5 ± 3.0, 10.1 ± 4.8, 4.0 ± 0.6, 1.8 ± 0.2, 3.6 ± 0.3, 1.0 ± 0.6, 1.1 ± 0.1 and 1.0 ± 0.6 in shavings, respectively. Arsenic was only found in the shavings (17.1 ± 17.1). Based on the results, sawdust is the most suitable byproduct for pellet and briquette production.

    Keyworks: Sawdust, shavings, inorganic elements, solid biofuels, bioenergy.
  • beenhereReferences
    • Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR). (2007). Reseña toxicológica del arsénico. Atlanta, GA, EE. UU.: Departamento de Salud y Servicios Humanos de los EE. UU., Servicio de Salud Pública.

    • Bahng, M. K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, 651(2), 117–138.

    • Campbell, A. G. (1990). Recycling and disposing of wood ash. TAPPI Journal, 73(9), 141–146.

    • De la Torre, E. Y. (2012). Los volcanes del Sistema Volcánico Transversal. Investigaciones Geográficas, Boletín del Instituto de Geografía, 50, 220–234.

    • Fengel, D., & Wegener, G. (1984). Wood chemistry, ultrastructure, reactions. Germany: Walter de Gruyter.

    • García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103(1), 249–258.

    • Granifo, R. A. (2009). Recuperación de los residuos de la madera para uso energético en la región metropolitana. Tesis, Universidad Andrés Bello, Santiago, Chile.

    • Khan, B. I., Solo-Gabriele, H. M., Dubey, B. K., Townsend, T. G., & Cai, Y. (2004). Arsenic speciation of solvent-extracted leachate from new and weathered CCA-Treated wood. Environmental Science & Technology, 38(17), 4527–4534.

    • Kuang, Y., Zhou, G., Wen, D., & Liu, S. (2007). Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China. Environmental Science and Pollution Research International, 14(4), 270–275.

    • Lambert, M. J. (1981). Inorganic constituents in wood and bark of New South Wales forest tree species. Sydney, Australia: Forestry Commission of New South Wales.

    • Liu, X., & Bi, X. T. (2011). Removal of inorganic constituents from pine barks and switchgrass. Fuel Processing Technology, 92(7), 1273–1279.

    • Minitab Inc. (2010). Minitab statistical software. Minitab Release, 16.2.1. USA: Autor.

    • Miranda, M. T., Arranz, J. I., Rojas, S., & Montero, I. (2009). Energetic characterization of densified residues from Pyrenean oak forest. Fuel, 88(11), 2106–2112.

    • Obernberger, I., & Thek, G. (2004). Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27(6), 653–669.

    • Obernberger, I., & Thek, G. (2010). The pellet handbook (1st ed.). London-Washington DC: Earthscan.

    • ÖNORM M 7135 (2000). Compressed wood or compressed bark in natural state-pellets and briquettes, requirements and test specifications. Vienna, Austria: Osterreichisches Normungsinstitut.

    • Revilla, G., E. (2011). Química de la madera de cuatro pinos mexicanos de la subsección Cembroides. Tesis, Universidad Autónoma Chapingo, Chapingo, Texcoco, Edo. de México, México.

    • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591– 611.

    • SPSS (2009). PASW Statistics 18. Chicago, IL, USA: Autor.

    • Téllez, C., Ochoa, H. G., Sanjuan, R., & Rutiaga, J. G. (2010). Componentes químicos del duramen de Andira inermis (W. Wright) DC.(Leguminosae). Revista Chapingo Serie   Ciencias Forestales y del Ambiente, 16(1), 87–93.

    • UNE-EN 14774. (2010). Biocombustibles sólidos. Determinación del contenido de humedad. Método de secado en estufa. Parte 3. Humedad de la muestra para análisis general. Madrid, España: Asociación Española de Normalización y Certificación.

    • UNE-EN 14775. (2010). Biocombustibles sólidos. Método para la determinación del contenido en cenizas. Madrid, España: Asociación Española de Normalización y Certificación.

    • Van Lith, S. C., Alonso, V., Jensen, P. A., Frandsen, F. J., & Glarborg, P. (2006). Release to the gas phase of inorganic elements during wood combustion. Part 1: Development and evaluation of quantification methods. Energy & Fuels, 20(3), 964–978.

    • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933.

    • Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., & Morgan, T. J. (2012). An overview of the organic and inorganic phase composition of biomass. Fuel, 94, 1–33.

    • Werkelin, J., Lindberg, D., Boström, D., Skrifvars, B. J., & Hupa, M. (2011). Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples. Biomass and Bioenergy, 35, 725–733.

    • Werkelin, J., Skrifvars, B. J., Zevenhoven, M., Holmbom, B., & Hupa, M. (2010). Chemical forms of ash-forming elements in woody biomass fuels. Fuel, 89(2), 481–493.

  • starCite article

    Correa-Méndez, F., Carrillo-Parra, A., Rutiaga-Quiñones, J. G.,  Márquez-Montesino, F., González-Rodríguez, H., Jurado-Ybarra, E., &  Garza-Ocañas, F. (2014).  MOISTURE AND INORGANIC SUBSTANCE CONTENT IN PINE TIMBER PRODUCTS FOR USE IN PELLETS AND BRIQUETTES. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XX(1), 77-88. http://dx.doi.org/10.5154/r.rchscfa.2013.04.012