Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad




Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XX, issue 2, May - August 2014


Ángeles Gallegos-Tavera; Francisco Bautista; Oscar Álvarez

Received: 09-11-2012

Accepted: 19-06-2014

Available online: / pages.237-249


picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The interpretive analysis of soil functions is essential for its proper use and handling. The evaluation of these soil functions evolved from the theoretical to the practical with the outlines of the method “Technique for soil evaluation and categorization for natural and anthropogenic soils”. On other hand, the soil interpretive models oriented to agriculture and environmental objectives, such as MicroLEIS DSS (Land evaluation decision support system for agricultural soil protection) have been the most used in the world, however, few models of soil functions are included in software so its manual handling can lead to errors and inaccuracies. The aim of this work was the development of a software system includes the advantages and benefits of MicroLEIS DSS and TUSEC models considering a more user-friendly. Assofu software stored as input the properties of soil profiles, and based on this information systematized assessments applying soil functions.

    Keyworks: Interpretative analysis of soils, soil-ecological assessment, soil profile, database.
  • beenhereReferences
    • Aguilar, Y., Bautista, F., & Díaz-Pereira, E. (2011). Soils as natural reactors for swine wastewater treatment. Tropical and subtropical agroecosystems, 13(2), 199–210.

    • Bautista, F., Luna, P. V. M., & Durán, B. C. (1995). El suelo, un reactor químico muy interesante. Educación química, 6(4), 226–230.

    • Bedolla-Ochoa, C., Gallegos, A., Barajas, A., & Bautista, F. (2013). Los suelos y sus funciones ambientales. Gaceta de la Unión Geofísica Mexicana, 3(10), 3–5.

    • Blum, W. E. H., & Santelises, A. A. (1994). A concept of sustainability and resilience based on soil functions. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 535–542). Wallingford, UK: CAB International.

    • Bouma, J. (2009). Soils are back on the global agenda: Now what? Geoderma, 150, 224–225.

    • Brümmer, G. (1978) Funktionen des Bodens im Stoffhaushalt der Ökosphäre. In G. Olschowy (Ed.), Natur–und Umweltschutz in der Bundesrepublik Deutschland, (pp. 111–124). Germany: Parey.

    • Bundesministerium der Justiz (1998). Bundes-Bodenschutzgesetz— BBodSchG. Germany: Bundesgesetzblatt I. Bonn.

    • De la Rosa, D., Mayol, F., Díaz-Pereira, E., Fernández, M., & De la Rosa, D., (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection. With special reference to the Mediterranean region. Environmental Modeling & Software, 19, 929–942.

    • De la Rosa, D. (2008). Evaluación agroecológica de suelos para un desarrollo rural sostenible. Madrid, España: Mundi Prensa.

    • De la Rosa, D., Anaya-Romero, M., Díaz-Pereira, E., Heredia, N., & Shahbazi, F. (2009). Soil-specific agro-ecological srategies for sustainable land use – a case study by using MicroLEIS DSS in Sevilla Province (Spain). Land Use Politicy, 26, 1055–1065.

    • Díaz-Pereira, E., Anaya-Romero, M., & De la Rosa, D. (2011). Modelos de evaluación agroecológica de tierras: Erosión y contaminación en el entorno MicroLEIS Evenor-Tech. Teoría y Praxis, 9, 91–107.

    • Food and Agriculture Organization of the United Nations (FAO). (1973). A framework for land evaluation. Roma: Autor.

    • Food and Agriculture Organization of the United Nations (FAO). (1978). Report on the agro-ecological zones project. World soil resources report. Roma: Autor.

    • Food and Agriculture Organization of the United Nations (FAO). (2009). Guía para la descripción de suelos. Roma: Autor.

    • Larson, W. E., & Pierce, F. J. (1994). The dynamics of soil quality as a measure of sustainable management. In D. C. Coleman, D. F. Bezdiceck, & B. A. Stewart (Eds.), Defining Soil Quality for a Sustainable Environment (pp. 37-51). USA: Soil Science Society of America and American Society of Agronomy.

    • Lehmann, A. (2006). Technosols and other proposals on urban soils for the WRB (World reference base for soil resources). International Agrophysics, 20(2), 129–134.

    • Lehmann A., David, S., & Stahr, K. (2008). TUSEC.-Technique for soil evaluation and categorization for natural and anthropogenic soils (English version). Alemania. Universitat Hohenheim Bodenkundliche Hefte.

    • Lehmann, A., & Stahr, K. (2010). The potential of soil functions and planner-oriented soil evaluation to achieve sustainable land use. Journal of Soils and Sediments, 10(6), 1092–1102.

    • Klingebiel, A. A., & Montgomery, P. H. (1961). Land-capability classification. Washington, DC: Soil Conservation Service, U.S. Department of Agriculture.

    • Microsoft. (2008a). Visual Basic 2008 Express.

    • Microsoft. (2008b). SQL Server 2008 Express.

    • Niemann, E. (1977). Eine Methode zur Erarbeitung der Funktionsleistung von Landschaftselementen. Archiv Naturschutz und Landschaftsforschung, 17, 119–157.

    • Normalización y Certificación Electrónica (NYCE) A. C. (2005). NMX-I045/NYCE 2005, Tecnología de la Información-Software- Procesos del ciclo de vida del software. México. Autor.

    • Ortiz-Solorio, C. A., & Gutiérrez-Castorena, M. C. (2005). Contemporary influence of indigenous soil (Land) classification in Mexico. Eurasian Soil Science, 38, S 8 9 – S94.

    • Osmond, D. L., Smyth, T. J., Yost, R. S., Reid, W. S., Hoag, D. L., Branch, W., Li, H. (2002). Nutrient Management Support System (NuMaSS) v. 2. Soil management collaborative research support program. USA: United States Agency for International Development, Soil Management Collaborative Research Support Program.

    • Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., & Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Kanagawa, Japan: Intergovernmental Panel on Climate Change, Institute for Global Environment Strategies.

    • Pérez-Ramírez, S., Ramírez, I., Jaramillo, P., & Bautista, F. (2013). Soil organic carbon content under different forest conditions: Monarch Butterfly Biosphere Reserve, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19, 157–173.

    • Richter, J. (1987). The soil as a reactor : Modelling processes in the soil. USA: Catena Verlag.

    • Sánchez, P. A., Couto, W., & Buol, S. W. (1982). The fertility capability soil classification system. Interpretation, applicability and modifications. Geoderma, 27, 283–309.

    • Siebe, C., Janh, R., & Stahr, K. (1996). Manual para la descripción y evaluación ecológica de suelos en el campo. Estado de México, México. Sociedad Mexicana de la Ciencia del Suelo, A. C.

    • Schlichting, E. (1972). Böden puffern Umwelteinflüsse. Umsch Wiss Tech, 72, 50–52.

    • Soil Science Society of America (1995). Statement on soil quality. USA: Agronomy News.

    • United States Department of Agriculture (USDA). (1983). National agricultural land evaluation and site assessment handbook. Washington, DC: US. Government Printing Office.

  • starCite article

    Gallegos-Tavera, Á., Bautista, F., &  Álvarez, O. (2014).  SOFTWARE Assofu TO ASSESS ENVIRONMENTAL SOIL FUNCTIONS. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XX(2), 237-249.