Revista Chapingo Serie Ciencias Forestales y del Ambiente
Universidad Autónoma Chapingo
Declaración de privacidad

 
 

 

 

 
Revista Chapingo Serie Ciencias Forestales y del Ambiente
Volume XX, issue 2, May - August 2014
play_arrow
play_arrow
play_arrow

CAPACIDAD DE LOS DATOS FENOLÓGICOS DERIVADOS DE CYCLOPESLAI DEL AÑO 2000 PARA DISTINGUIR LOS TIPOS DE COBERTURA EN EL ESTADO DE MICHOACÁN, MÉXICO
CAPACITY OF PHENOLOGICAL DATA DERIVED FROM CYCLOPES LAI FOR THE YEAR 2000 TO DISTINGUISH LAND COVER TYPES IN THE STATE OF MICHOACÁN, MEXICO

Luis Valderrama-Landeros; María Luisa España-Boquera; Frédéric Baret; Nahum M. Sánchez-Vargas; Cuauhtémoc Sáenz-Romero

http://dx.doi.org/10.5154/r.rchscfa.2013.08.025

Received: 18-08-2013

Accepted: 26-06-2014

Available online: / pages.261-276

 

picture_as_pdfDownload cloudxml picture_as_pdf View Online
  • descriptionAbstract

    The capacity of the phenological data of the CYCLOPES project LAI series for the year 2000 to distinguish general vegetation types (evergreen forest, deciduous forest, crops and pastureshrubland) in Michoacán, Mexico, was explored. Using the TIMESAT program, 11 phenological variables of each 1-km pixel of that series were extracted. The behavior of each variable was analyzed using the INF2000 map as a reference. The main differences relate to the deciduous or evergreen character of the vegetation. The 11 variables were reduced to five principal components (98% of the variance) to make an unsupervised classification of 250 phenological classes or groups. Each class was associated with one of the cover types, with a criterion of maximum area matched with the INF2000 reference map, in order to construct the CYCL2000 cover map. Comparing the two maps yielded modest results, with 63 % total accuracy. Deciduous forests were better identified (80.1 % of pixels correctly identified and 62.1 % correctly classified), followed by evergreen forests (74.1 %, 69.9 %), crops (62.9 %, 61.1 %) and pasture shrubland (16.9 %, 52.3 %). The relatively good identification of forests shows that this approach could be used to estimate deforestation.

    Keyworks: Time series, phenology, biophysical variables, cover map, global data.
  • beenhereReferences
    • Achard, F., & Hansen, M. C. (2013). Use of Earth observation  technology to monitor forest across the Globe. In F.  Achard, & M. C. Hansen (Eds.), Global forest monitoring  from Earth observation (pp. 39–54). New York, USA: CRC  Press, Taylor & Francis Group

    • Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M…,  Leroy, M. (2007). LAI, fAPAR and fCover CYCLOPES  global products derived from VEGETATION. Part 1:  Principles of the algorithm. Remote Sensing of Environment,  110, 275–286. 

    • Campbell, J. B. (2002). Introduction to remote sensing (3rd. ed.). New York, USA: The Guilford Press.

    • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of Environment, 37(1), 35–46. doi: 10.1016/0034-4257(91)90048-B

    • Couturier, S., Mas, J. F., López-Granados, E., Benítez, J., Tapia, V., & Vega, A. (2010). Accuracy assessment of the Mexican National Forest Inventory map: a study in four ecogeographical areas. Singapore Journal of Tropical Geography, 31(2), 163–79.

    • DeFries, R. (2013). Why forest monitoring matters for people and the planet. In F. Achard, & M. C. Hansen (Eds.), Global forest monitoring from Earth observation (pp. 1–14). New York, USA: CRC Press, Taylor & Francis Group.

    • Fisher, J. A. D., Frank, K. T., & Leggett, W. C. (2010). Dynamic macroecology on ecological time-scales. Global Ecology and Bio-geography, 19, 1–15.

    • García, M. E. (1989). Apuntes de climatología (6a ed.). México, D.F.: UNAM.

    • Geoland2. (2014). Dataset series catalogue.

    • Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., & Saatchi, S. (2008). Measuring and modelling biodiversity from space. Progress in Physical Geography, 32, 203–221.

    • Houghton, R. A. (2013). Role of forests and impact of deforestation in the global carbon cycle. In F. Achard, & M. C. Hansen (Eds.), Global forest monitoring from Earth observation (pp. 15–38). New York, USA: CRC Press, Taylor & Francis Group.

    • Instituto Nacional de Estadística y Geografía (INEGI). (1985). Síntesis geográfica del estado de Michoacán. México: Autor.

    • Instituto Nacional de Estadística y Geografía (INEGI) (2012). Marco geoestadístico municipal 2000, áreas geoestadísticas estatales. Consultado 12-06-2012

    • Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation. Principles, techniques and applications. New York, USA: Oxford University Press.

    • Jönsson, P., & Eklundh, L. (2004). TIMESAT: A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833–845.

    • Kandasamy, S., Baret, F., Verger, A., Neveux, P., & Weiss, M. (2012). A comparison of methods for smoothing and gap filling time series of remote sensing observations: Application to MODIS LAI products. Biogeosciences Discussions, 9, 17053–17097.

    • Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881–892.

    • Mas, J. F., Velázquez, A., Palacio-Prieto, J. L., Bocco, G., Peralta, A., & Prado, J. (2002). Assessing forest resources in Mexico: Wall to wall land use/cover mapping. Photogrammetric Engineering & Remote Sensing, 68(10), 966–968.

    • Matlab, Mathematics Laboratory (2012). Matlab: The language of technical computing. Massachusetts, USA: The MathWorks, Inc.

    • Miranda, F., & Hernández, X. (1963). Los tipos de vegetación de México y su clasificación. Boletin de la Sociedad Botánica Mexicana, 28, 29–179.

    • Palacio-Prieto, J. L., Bocco, G., Velázquez, A., Mas, J. F., Takaki- Takaki, F., Victoria, A…, González, M. F. (2000). La condición actual de los recursos forestales en México: Resultados del Inventario Forestal Nacional 2000. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM, 43, 183–203.

    • Petitjean, F., Inglada, J., & Gancarski, P. (2012). Satellite image time series analysis under time warping. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3081–3095.

    • Pfeifer, M., Disney, M., Quaife, T., & Marchant, R. (2011). Terrestrial ecosystems from space: A review of earth observation products for macroecology applications. Global Ecology and Biogeography, 21(6), 603–624.

    • Rzendowsky, J. (1978). Vegetación de México. México, D.F: Editorial Limusa

    • Secretaría de Medio Ambiente, Recursos Naturales y Pesca (SEMARNAP). (1997). Estadísticas del Medio Ambiente. México, D.F.: INEGI.

    • Valderrama-Landeros, L., Baret, F., & España-Boquera, M. L. (2011). Consistency between global and regional land cover maps over Michoacán state, Mexico. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 17, 343–360.

    • Velázquez, A., Mas, J. F., Bocco, G., & Palacio‐Prieto, J. L. (2010). Mapping land cover changes in Mexico, 1976–2000 and applications for guiding environmental management policy.Singapore Journal of Tropical Geography, 31(2), 152–162.

    • Weiss, M., Baret, F., Garrigues, S., Lacaze, R., & Bicheron, P. (2007). LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS Collection 4 products. Remote Sensing of the Environment, 110, 317–331.

  • starCite article

    Valderrama-Landeros, L., España-Boquera, M. L.,  Baret, F., Sánchez-Vargas, N. M.,  &  Sáenz-Romero, C. (2014).  CAPACITY OF PHENOLOGICAL DATA DERIVED FROM CYCLOPES LAI FOR THE YEAR 2000 TO DISTINGUISH LAND COVER TYPES IN THE STATE OF MICHOACÁN, MEXICO. Revista Chapingo Serie Ciencias Forestales y del Ambiente, XX(2), 261-276. http://dx.doi.org/10.5154/r.rchscfa.2013.08.025