Ingeniería Agrícola y Biosistemas Volume -, issue -, Publicación en avanzada - 2018 Versión en español
Electronic ISSN: 2007-4026
Print ISSN: 2007-3925

 

Advanced publication
play_arrow

Determination of shear velocity in a mild-sloping open channel flow

Determinación de la velocidad de corte en un flujo de canal abierto de baja pendiente

Ángel Mendoza-González; Ariosto Aguilar-Chávez

http://dx.doi.org/10.5154/r.inagbi.2017.01.002

Received: 2017-01-24

Accepted: 2017-11-25

Available online: 2018-02-13 /pág.00-00

 

picture_as_pdfDownload open_in_newExport citation cloudxml
  • descriptionAbstract

    Objective: To present a methodology that allows experimentally determining shear velocity, considering the log-law as a model of velocity distribution in the outer region of turbulent flow. 
    Methodology: The experimental study was carried out in a rectangular-shaped, variablysloped channel with a 0.245-m-wide base and 5 m long. Flow velocity was measured with an Acoustic Doppler Velocimeter (ADV), and the measurement area was 12 mm. Shear velocity was determined by the instantaneous velocity equation (ui,j). 
    Results: The log-law model had a good statistical fit with the shear velocity estimated from the experimental data.
    Study limitations: The experimental tests were conducted only in subcritical regime with low aspect ratios. In addition, in all tests, the measurement of instantaneous velocities was carried out only in a 12-mm profile, as close as possible to the wall.
    Originality: The model to calculate the shear velocity is presented explicitly, and the statistical approach employed supports the use of the median as an estimator of the shear velocity.
    Conclusions: The presented methodology shows low uncertainty in the estimation of shear velocity. The Anderson-Darling test showed that the results do not follow a normal distribution, so the median is the statistical parameter to define the shear velocity value.

    Keyworks: esfuerzo cortante, velocimetría acústica de efecto Doppler, ley logarítmica

  • beenhereReferences
    • Auel, C., Albayrak, I., & Boes, R. M. (2014). Turbulence characteristics in supercritical open channel flows: effects of froude number and aspect ratio. Journal of Hydraulic Engineering, 140(4), 1-30. 

    • Burden, R. L., & Faires, J. D. (2011). Numerical Analysis. USA: Cengage Learning.

    • Cebeci, T., & Chang, K. C. (1978). Calculation of incompressible rough‐wall boundary layer flows. AIAA Journal, 16(7), 730-735.

    • Celestini, R., Silvagni, G., Spizzirri, M., & Volpi, F. (2007). Sediment transport in sewers. WIT Transactions on Ecology and the Environment, 103, 273-282.

    • Coleman, N. L., & Alonso, C. V. (1983). Two-dimensional channel flows over rough surfaces. Journal of Hydraulic Engineering, 109(2), 175-188.

    • Davidson, P. A. (2004). Turbulence: An introduction for scientists and engineers. Cary, NC: USA Oxford University Press.

    • Frisch, U., & Kolmogorov, A. N. (1995). Turbulence: The legacy of A. N. Kolmogorov. United Kingdom: Cambridge University Press.

    • George, W. K. (2007). Is there a universal log law for turbulent wall-bounded flows? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1852), 789-806.

    • International Organization for Standardization (ISO). (2008). Hydrometry – Open channel flow measurement using thin-plate weirs.

    • Keulegan, G. H. (1938). Laws of turbulent flow in open channels. Journal of Research of the National Bureau of Standards, 21(6), 707-741. 

    • Motlagh, S. Y., & Taghizadeh, S. (2016). POD analysis of low Reynolds turbulent porous channel flow. International Journal of Heat and Fluid Flow, 61, 665-676. 

    • Nezu, I., & Nakagawa, H. (1993). Turbulence in open channel flows. Cleveland, Ohio: CRC Press.

    • Panton, R. L. (2013). Incompressible flow. USA: John Wiley & Sons, Inc.

    • Qiao, J. D., Delavan, S. K., Nokes, R. I., & Plew, D. R. (2016). Flow structure and turbulence characteristics downstream of a spanwise suspended linear array. Environmental Fluid Mechanics, 16(5), 1021-1041. 

    • Schlichting, H., & Gersten, K. (2017). Boundary-Layer Theory. Berlin: Springer Berlin Heidelberg. 

    • Schmid, W. A., & Lazos-Martínez, R. J. (2000). Guía para estimar la incertidumbre de la medición. México: Centro Nacional De Metrología. 

    • Shih, T. H., Povinelli, L. A., Liu, N. S., Potapczuk, M. G., & Lumley, J. L. (1999). A generalized wall function. Springfield: Nasa Center for Aerospace Information. 

    • Spalding, D. B. (1961). A single formula for the “Law of the wall.” Journal of Applied Mechanics, 28(3), 455-458. 

    • Stephens, M. A. (1974). EDF Statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69(347), 730-737. 

    • Tominaga, A., & Nezu, I. (1992). Velocity profiles in steep open‐channel flows. Journal of Hydraulic Engineering, 118(1), 73-90. 

    • Van Rijn, L. C. (1984). Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering, 110(10), 1431-1456.

    • Wu, F. C., Shen, H. W., & Chou, Y. J. (1999). Variation of roughness coefficients for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125(9), 934-942.

    • Zanoun, E. S., Durst, F., & Nagib, H. (2003). Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Physics of Fluids, 15(10), 3079-3089.

  • starCite article

    Mendoza-González, Á., &  Aguilar-Chávez, A. (2018).  Determination of shear velocity in a mild-sloping open channel flow. , -(-), 00-00. http://dx.doi.org/10.5154/r.inagbi.2017.01.002